Integer Valued Betting strategies and Turing Degrees

نویسندگان

  • George Barmpalias
  • Rodney G. Downey
  • Michael McInerney
چکیده

Betting strategies are often expressed formally as martingales. A martingale is called integer-valued if each bet must be an integer value. Integer-valued strategies correspond to the fact that in most betting situations, there is a minimum amount that a player can bet. According to a well known paradigm, algorithmic randomness can be founded on the notion of betting strategies. A real X is called integer-valued random if no effective integer-valued martingale succeeds on X. It turns out that this notion of randomness has interesting interactions with genericity and the computably enumerable degrees. We investigate the computational power of the integer-valued random reals in terms of standard notions from computability theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective martingales with restricted wagers

Computable randomness is a central notion in the theory of algorithmic randomness. An infinite sequence of bits x is computably random if no computable betting strategy can win an infinite amount of money by betting on the values of the bits of x. In the classical model, the betting strategies considered take realvalued bets. We study two restricted models, where the strategies considered take ...

متن کامل

A savings paradox for integer-valued gambling strategies

Under the assumption that wagers remain integer-valued, as would happen in most casinos, we identify the following bizarre situation: there exists a sequence of coin flips X such that some effective gambler manages to accumulate arbitrary wealth by betting on X, however any such gambler goes bankrupt whenever he tries to take his winnings outside the casino.

متن کامل

Some improvements in fuzzy turing machines

In this paper, we improve some previous definitions of fuzzy-type Turing machines to obtain degrees of accepting and rejecting in a computational manner. We apply a BFS-based search method and some level’s upper bounds to propose a computational process in calculating degrees of accepting and rejecting. Next, we introduce the class of Extended Fuzzy Turing Machines equipped with indeterminacy s...

متن کامل

Countable composition closedness and integer-valued continuous functions in pointfree topology

‎For any archimedean$f$-ring $A$ with unit in whichbreak$awedge‎ ‎(1-a)leq 0$ for all $ain A$‎, ‎the following are shown to be‎ ‎equivalent‎: ‎ ‎1‎. ‎$A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all‎ ‎integer-valued continuous functions on some frame $L$‎. 2‎. ‎$A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$‎ ‎of all integer-valued continuous functions‎, ‎in the usual se...

متن کامل

Weak Disposability in Integer-Valued Data Envelopment Analysis

Conventional data envelopment analysis (DEA) models normally assume all inputs and outputs are real valued and continuous. However in problems some inputs and outputs can only take integer values, also, both desirable and undesirable outputs can be generated . In this paper the effect of undesirable outputs in integer DEA model is discussed. The proposed model distinguishes weak disposability o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Syst. Sci.

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2015